Chapter 3: Triangles / Polygons

Lesson 3-1: Triangle Fundamentals

Homework

name _____ date ____ period ____

2. If
$$m\angle 1 = 107^{\circ}$$
 and $m\angle 3 = 37^{\circ}$, find $m\angle 2$.

3. If
$$m\angle 2 = 34^{\circ}$$
 and $m\angle 3 = 67^{\circ}$, find $m\angle 1$.

4. If
$$m\angle 1 = 16^{\circ}$$
 and $m\angle 2 = 35^{\circ}$, find $m\angle 3$.

5. If
$$m \angle 3 = 88^{\circ}$$
 and $m \angle 2 = 47^{\circ}$, find $m \angle 1$.

x = ____, m<1 = ____, m<2 = ____, m<3 = ___

x = ____, m<1 = ____, m<2 = ____, m<3 = ___

6. If $m \angle 1 = x + 30$, $m \angle 2 = x - 23$ and $m \angle 3 = 2x - 7$, find x and the value of each numbered angle. $x = \underline{\hspace{1cm}}, m < 1 = \underline{\hspace{1cm}}, m < 2 = \underline{\hspace{1cm}}, m < 3 = \underline{\hspace{1cm}}$

7. If
$$m\angle 1 = 9x$$
, $m\angle 2 = 2x$ and $m\angle 3 = 7x$, find x and the value of each numbered angle.

8. If
$$m \angle 1 = 3 \times +20$$
, $m \angle 2 = 2 \times -25$ and $m \angle 3 = 5 \times +10$, find \times and the value of each numbered angle.

- 10. If $m<2=61^{\circ}$ and $m<3=21^{\circ}$, then m<4=____.
- 11. If $m<1=80^{\circ}$ and $m<2=73^{\circ}$, then m<6=____.
- 12. If $m<4=103^{\circ}$ and $m<3=18^{\circ}$, then m<2=____.
- 13. If $m<5=99^{\circ}$ and $m<3=32^{\circ}$, then m<1=____.
- 14. If m<2=x+10, m<3=x and $m<4=100^{\circ}$, then $x = ____.$

Describe each triangle.		<u> </u>
15	triangle	# **
16	triangle	20°
17	triangle	
18	triangle	
19	triangle	112°
20	triangle	72° 34°

- 21. In the figure to the right, polygon ABC is a triangle. \overline{CD} is an altitude. \overline{CE} is an angle bisector. \overline{CF} is a median.
- a. Name two congruent angles, each of which has its vertex at C.
- b. Name two line segments which are congruent.
- c. Name two line segments which are perpendicular to each other.

d. Name two angles which are right angles.