13-2 Practice Worksheet Arithmetic Sequences

Find the nth term of each arithmetic sequence.

$$\sqrt{1}$$
. $a_1 = -5$, $d = 4$, $n = 9$

2.
$$a_1 = 13$$
, $d = -\frac{5}{2}$, $n = 29$

$$\sqrt{3}$$
. $a_1 = 3$, $a' = -4$, $n = 6$

4.
$$a_1 = -5$$
, $\vec{a} = \frac{1}{2}$, $n = 10$

Complete each statement.

$$\sqrt{5}$$
. 97 is the ___? th term of -3, 1, 5, 9,

Find the indicated term in each arithmetic sequence.

$$\sqrt{7}$$
. a_{15} for $-3, 3, 9, \dots$

8.
$$a_{19}$$
 for 17, 12, 7, ...

)
$$a_{26}$$
 for $1, \frac{7}{3}, \frac{11}{3}, \dots$

10.
$$a_{35}$$
 for 17, $16\frac{2}{3}$, $16\frac{1}{3}$, \ldots

Find the missing terms in each arithmetic sequence.

15. How many multiples of 11 are there between 13 and 384?

Practice Worksheet

Arithmetic Series

Find S_n for each arithmetic series described.

$$\sqrt{1}$$
. $a_1 = 16$, $a_n = 98$, $n = 13$

2.
$$a_1 = 13, d = -6, n = 21$$

3.
$$d = -\frac{2}{3}$$
, $n = 16$, $a_n = 44$

4.
$$a_1 = -121, d = 3, a_n = 5$$

Find the sum of each arithmetic series.

$$\sqrt{9}. \sum_{k=3}^{8} (5k-10)$$

$$\sqrt{10}$$
. $\sum_{p=4}^{10} (2p+1)$

$$\sqrt{11}$$
. $\sum_{n=1}^{6} (3n + 5)$

$$\sqrt{12.} \sum_{j=1}^{5} (9-4j)$$

Find the first three terms of each arithmetic series described.

13.
$$a_1 = 14$$
, $a_n = -85$, $S_n = -1207$

14.
$$n = 16$$
, $a_n = 15$, $S_n = -120$

15. A display in a grocery store has 1 can on the top row, 2 cans on the 2nd row, 3 cans on the 3rd row, and so on. How many cans are needed to make 25 rows?

4 Practice Worksheet

Geometric Sequences

Find the first four terms of each geometric sequence described.

$$\sqrt{1}$$
. $a_1 = -6$, $r = -\frac{2}{3}$

$$\sqrt{2}$$
. $a_1 = 2$, $r = \sqrt{3}$

$$\sqrt{3}$$
. $a_1 = -\frac{5}{2}$, $r = 2$

$$\sqrt{4}$$
. $a_1 = \sqrt{2}$, $r = \sqrt{3}$

Find the nth term of each geometric sequence described.

$$\sqrt{5}$$
. $a_1 = 5$, $n = 4$, $r = 3$

6.
$$a_4 = 20, n = 6, r = -3$$

$$\sqrt{7}$$
. $a_1 = -4$, $n = 6$, $r = -2$

8.
$$a_6 = 8$$
, $n = 12$, $r = \frac{1}{2}$

9. Each foot of water screens out 60% of the light above. What percent of the light remains after passing through 5 feet of water?

Find the missing geometric means. Then graph each sequence, using the x-axis for the number of the term and the y-axis for the term itself.

10. _____, 2, _____, 54

162= 72 re

13-5 Practice Worksheet

Geometric Series

Find the sum of each geometric series described.

$$\sqrt{1.160 + 80 + 40 + \dots, n = 6}$$

$$\sqrt{2}. \ a_1 = 5, r = -\frac{1}{2}, n = 7$$

3.
$$a_2 = \frac{-3}{8}$$
, $a_3 = \frac{1}{4}$, $n = 5$

4.
$$a_3 = 8$$
, $a_5 = 2$, $n = 6$

Use sigma notation to express each series.

5.
$$54 + 18 + 6 + 2 + \frac{2}{3} + \frac{2}{9}$$

6.
$$16 - 24 + 36 - 54 + 81 - 121.5 + 182.25$$

Find a, for each geometric series described.

7.
$$S_n = -55, r = -\frac{2}{3}, n = 5$$

8.
$$S_n = 2457$$
, $a_n = 3072$, $r = -4$

- 9. A pile driver drives a post 9 feet into the ground on its first hit. Each additional hit drives the post $\frac{2}{3}$ the distance of the prior hit. Find the total distance the post has been driven after 4 hits.
- 10. In problem 9, what is the greatest distance the pole could be driven into the ground?
- 11. Hugh Moore makes up a joke and tells it to his 5 closest friends on Sunday morning. Each of those friends tells his or her 5 closest friends on Monday morning, and so on. Assuming no duplication, how many people will have heard the joke by the end of Saturday?

$$\sum_{x=a}^{e} -3^{x}$$